Coexisting bacterial populations responsible for multiphasic mineralization kinetics in soil.
نویسندگان
چکیده
Experiments were conducted to study populations of indigenous microorganisms capable of mineralizing 2,4-dinitrophenol (DNP) in two soils. Previous kinetic analyses indicated the presence of two coexisting populations of DNP-mineralizing microorganisms in a forest soil (soil 1). Studies in which eucaryotic and procaryotic inhibitors were added to this soil indicated that both populations were bacterial. Most-probable-number counts with media containing different concentrations of DNP indicated that more bacteria could mineralize low concentrations of DNP than could metabolize high concentrations of it. Enrichments with varying concentrations of DNP and various combinations of inhibitors consistently resulted in the isolation of the same two species of bacteria from soil 1. This soil contained a large number and variety of fungi, but no fungi capable of mineralizing DNP were isolated. The two bacterial isolates were identified as a Janthinobacterium sp. and a Rhodococcus sp. The Janthinobacterium sp. had a low mu(max) and a low K(m) for DNP mineralization, whereas the Rhodococcus sp. had much higher values for both parameters. These differences between the two species of bacteria were similar to differences seen when soil was incubated with different concentrations of DNP. Values for mu(max) from soil incubations were similar to mu(max) values obtained in pure culture studies. In contrast, K(s) and K(m) values showed greater variation between soil and pure culture studies. The results of this study help to confirm predictions that two physiologically distinct bacterial populations are responsible for the multiphasic mineralization kinetics observed in the soil studied.
منابع مشابه
Exploration of hidden Pb-Zn deposit through geomicrobiological studies at Irankuh area, Iran
Different methods have been developed for mineral exploration so far, amongst which biological-based methods known as geomicrobiological studies are of the most recent ones. Geomicrobiology as an interdisciplinary approach has achieved great progresses during the past two decades and involves the study of microbes in a number of fundamental geological processes, both in the past and present. Th...
متن کاملDesorption Kinetics of Heavy Metals (Lead, Zinc, and Nickel) Coexisted with Phenanthrene from a Natural High Buffering Soil
This work aims to investigate the competitive time-dependent desorption rate of heavy metals (lead, zinc, nickel) coexisting with phenanthrene from natural high buffering soil. Two non-ionic surfactants (Tween 80 and Brij 35) combined with disodium ethylene diamine tetraacetate salt (Na2-EDTA) were utilized as the reagents. The contaminants’ time-dependent desorption data was fitted with five k...
متن کاملModels for the kinetics of biodegradation of organic compounds not supporting growth.
We developed 12 models of kinetics to describe the metabolism of organic substrates that are not supporting bacterial growth. These models can be used to describe the biodegradation of organic compounds that are not supporting growth when the responsible populations are growing logistically, logarithmically, or linearly or are not increasing in numbers. Nonlinear regression analysis was used to...
متن کاملContamination of soil by copper affects the dynamics, diversity, and activity of soil bacterial communities involved in wheat decomposition and carbon storage.
A soil microcosm experiment was conducted to evaluate the influence of copper contamination on the dynamics and diversity of bacterial communities actively involved in wheat residue decomposition. In the presence of copper, a higher level of CO(2) release was observed, which did not arise from greater wheat decomposition but from a higher level of stimulation of soil organic matter mineralizati...
متن کاملKinetics of mineralization of organic compounds at low concentrations in soil.
The kinetics of mineralization of 14C-labeled phenol and aniline were measured at initial concentrations ranging from 0.32 to 5,000 ng and 0.30 ng to 500 micrograms/g of soil, respectively. Mineralization of phenol at concentrations less than or equal to 32 ng/g of soil and of aniline at all concentrations began immediately, and the curves for the evolution of labeled CO2 were biphasic. The pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 56 9 شماره
صفحات -
تاریخ انتشار 1990